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Ensembles

Statistical Mechanics

A central concept is the equilibrium ensemble
� Formal definition: An equilibrium ensemble describes the

equilibrium probability density distribution in phase space
of a system subject to given external constraints

� Phase space: 6N space of positions (q) and momenta (p)
of all atoms N

� Different ensembles correspond to systems having
different constraints

� Depending on the system, one of several different
ensembles may be easiest to use

� All ensembles yield the same thermodynamic behavior in
thethermodynamic limit
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Postulates

� Ergodic Hypothesis: Given enough time, a system will
sample all microstates consistent with the constraints
imposed.

� Time averages are equivalent to ensemble averages
� Mathematically

〈x〉 =

∑
i xiρi∑
i ρi

= lim
t→∞

1
t

∑
i

xi∆ti (1)

where ρi is the probability density of state i .
� Equal a Priori Probabilities: All microstates having the

same energy are equally probable.
� We use this postulate to construct distribution functions

based solely on energetics
� Mathematically,

ρi = ρi(Ei ) (2)
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Microcanonical Ensemble

Imagine a box with insulated, rigid, impermeable walls.
� The molecules in the box are isolated: no energy

exchange with the surroundings (E is constant)
� The box is rigid (no volume change)
� The walls are impermeable (N is constant)
� Thermodynamic constraints are constant NVE

This is the natural constraints of the equations of motion
(molecular dynamics ensemble)
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Microcanonical Ensemble

constant N,V,E
Microstate 1

Microstate 2

Microstate 3

Microstate 4

� Microstates 2,3 and 4 have same constraints as microstate
1 - they are at same thermodynamic state

� Each arrangement of (qN , pN) different
� ensemble: large collection of different microstates
� With time, molecules explore entire (qN , pN) space
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Microcanonical Ensemble

� W (N, V , E) be number of microstates with energy between
E and E − δE

� δE is resolution limit for energy
� Equal a priori probabilities means that for a given

microstate ν
� if E − δE < Eν < E , then PNVE

ν = 1
W (N,V ,E)

� otherwise PNVE
ν = 0

� PNVE
ν is the probability of a microstate (not an energy level)

� Probability of an energy level, Eν , is found by multiplying
PNVE

ν by the degeneracy of that level
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Microcanonical Probability Distribution

� Classically, microstates form a continuum in phase space
� The equilibrium probability density, ρNVE(pN , qN), is given

by
1. if E − δE < H(qN , pN) < E , then ρNVE(qN , pN) = 1

Σ(N,V ,E)

2. otherwise ρNVE(qN , pN) = 0

where Σ(N, V , E) =
∫
Γ′ dqNdpN

� The shorthand notation Γ′ refers to the region of phase
space where E − δE < H(pN , qN) < E

� Note the dimensions of ρNVE are (pq)−3N , which is
consistent with a density.
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Classical and Quantum Formulation Reconciliation

� Classically, define a dimensionless quantity that
corresponds to the number of microstates in the quantum
mechanical formulation:

W (N, V , E) =
1

h3NN!
Σ(N, V , E) =

1
h3NN!

∫
Γ′

dpNdqN (3)

� Prefactor 1/(h3NN!) simply ensures consistency between
classical and quantum mechanical pictures

� h3N tells us there is a lower limit to the resolution with
which we can define state points, and makes W
dimensionless

� N! arises from the indistinguishability of molecules (correct
“Boltzmann counting”).
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Connection with Thermodynamics

� Boltzmann’s expression for entropy

S(N, V , E) ≡ kB ln W (N, V , E) (4)

� This is the connection between (NVE) ensemble and
thermodynamics

� Recall that (
∂S
∂E

)
N,V

= 1/T (5)

� Thus, we see that

β ≡ (kBT )−1 =

(
∂ ln W

∂E

)
N,V

(6)

� Thermodynamic condition that temperature is positive
requires that W (N, V , E) be a monotonic increasing
function of E
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Canonical Ensemble

� “Natural” ensemble of MC
� Imagine a collection of microstates, each contained by

rigid, impermeable but thermally conductive walls
� What is constant?
� Rigid: volume
� Impermeable: number of molecules
� Thermally conductive: NOT energy, but temperature
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Canonical Ensemble

� Energy of each microstate can fluctuate
� Conjugate variable (T) of each microstate constant
� The entire system can be treated as an NVE system, but

each cell is at constant NVT

Collection of such microstates defines canonical ensemble
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Canonical Ensemble, cont.

� What is the probability distribution for this ensemble?
� Ni is number of members in state i with energy Ei

� Sum over all members in each state i gives total number of
members (constraint on N )

N =
∑

i

Ni (7)

� Total energy is constrained

E =
∑

i

NiEi (8)

� As is the total volume

V =
∑

i

Vi (9)

where Vi is the volume of microstate i
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Canonical Ensemble, cont.

� For any of distributions, the probability of finding Nj

ensemble members in the j th state is

ρj =
Nj

N (10)

� But what is Nj? Replace Nj with the expectation value 〈Nj〉
determined from all combinations of the N ensemble
members

� Solution: assume equal a priori probabilities (that is, equal
probabilities for energetically degenerate states)
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Canonical Ensemble

We sketch the derivation in the notes. The result is

ρk =
e−βEk∑
j e−βEj

(11)

� This is the canonical ensemble (“Boltzmann”) probability
distribution

� Use to find expectation value of any mechanical property
that depends upon the microscopic state of the system

� β is an undetermined multiplier
� We show in notes that

β =
1

kBT
(12)
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Canonical Ensemble

ρk =
e−βEk∑
j e−βEj

� The denominator is the normalization term for the
distribution of all states

� It is an important quantity which will appear in all canonical
ensemble averages, and so is given a name

Q(N, V , β) =
∑

k

e−βEk (13)

� Q is the canonical ensemble partition function, so called
because it is a sum over all the states partitioned by
energy level.

(c) 2011 University of Notre Dame



Ensembles

Classical Formulation

Hamiltonian H(pN , qN) =
(∑

i p2
i /(2mi) + V(qN)

)

Q =
1

h3NN!

∫
dpNdqN exp

[
−β

(∑
i

p2
i /(2mi) + V(qN)

)]

(14)
Probability density

ρNVT (qN , pN) =
exp

(−β[H(qN , pN)]
)

QNVT (N, V , T )
(15)
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Connection With Thermodynamics

In the notes, we show how various thermodynamic quantities
are related to Q. Here we just state the results:

� U = −
(

∂ ln Q
∂β

)
V ,N

= kBT 2
(

∂ ln Q
∂T

)
V ,N

� P = kBT
(

∂ ln Q
∂V

)
N,T

� S = U
T + kB ln Q = kBT

(
∂ ln Q
∂T

)
N,V

+ kB ln Q

� A = −kBT ln Q

If we knew Q, we could compute all the thermodynamic
properties of a system!
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Computing a Partition Function

� Can we compute Q directly?
� Consider simple system of N interacting particles with only

two states (“up” or “down”)
� How many configurations are there to evalute?
� 2N configurations
� So for 100 particles, you must evaluate 2100 = 1 × 1030

configurations!
� Obviously, we need to do something else. More on this

later.
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Isothermal - Isobaric Ensemble

� Most experiments are conducted at constant T and P
� The isothermal–isobaric (NPT) ensemble

� Constant number of particles, temperature, and pressure
� Thus, the volume will fluctuate, and must become a variable

of the phase space

� A point in phase space given by specifying V , qN , and pN
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� The probability density is derived in the manner used for
the canonical ensemble. The result

ρNPT (qN , pN , V ) =
exp

(−β[H(qN , pN ; V ) + PV ]
)

QNPT (N, P, T )
(16)

� where QNPT is the isothermal–isobaric partition function in
the semi-classical form

QNPT =
1

N!h3NV0

∫
dV
∫

dqNdpN exp
(
−β[H(qN , pN ; V ) + PV ]

)
(17)

� Often the symbol ∆ is used for QNPT
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� The factor V0 is some basic unit of volume chosen to
render QNPT dimensionless.

� Notice that

QNPT =
1
V0

∫
dV exp(−βPV )QNVT (qN , pN ; V ) (18)

where QNVT is the canonical ensemble partition function of
the system at volume V .

� The connection with thermodynamics is via the Gibbs
function

G(N, P, T ) = −1
β

ln QNPT (N, P, T ) (19)
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Grand Canonical Ensemble

� Canonical ensemble: many systems enclosed in container
with impermeable, rigid, heat conducting walls

� Each system specified by N, V , T .
� grand canonical ensemble: each system enclosed in a

container with permeable, rigid, heat conducting walls
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Grand Canonical Ensemble, cont

� All boxes have permeable, rigid and heat conducting walls
� Each system characterized by constant µi ,V ,T
� Number of particles fluctuates (can range 0 → ∞)
� Notes show how to derive the grand canonical partition

function
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Grand Canonical Ensemble, cont

� Turns out the grand canonical ensemble can be thought of
as an “expanded” canonical ensemble

Ξ(µ, V , T ) =
∑

N

∑
j

e−βENj(V )eβµN (20)

� Allow for variation of N with conjugate variable µ

� Ξ is the grand canonical partition function
� Summing over j for fixed N relates Q and Ξ

Ξ(µ, V , T ) =
∑

N

Q(N, V , T )eβµN (21)
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Grand Canonical Ensemble, cont

Ξ(µ, V , T ) =
∑

N

Q(N, V , T )eβµN (22)

� eβµ often denoted λ

� Thus µ = kBT ln λ

� λ is the absolute activity
� Difference in chemical potentials between two states is

given by
∆µ = kBT ln(a2/a1)
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Grand Canonical Ensemble, Classical Form

Classical form over continuous variables

Ξ(µ, V , T ) =
∞∑

N=0

exp(βµN)

h3NN!

∫
dpNdqN exp

(
−βV(pN , qN)

)
(23)
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Configurational Integrals

� If Hamiltonian is separable

H(pN , qN) = K(pN) + V(qN) (24)

kinetic energy term many be integrated out analytically
� Thermodynamic properties only depend on qN

� Can obtain thermodynamic properties from the
configurational integral. Examples:

ZNVT =

∫
dqN exp

(
−βV(qN)

)
(25)

ZNPT =

∫
dV exp(−βPV )

∫
dqN exp

(
−βV(qN)

)
(26)
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Summary

� Configurational integrals and probability densities are key
elements of Monte Carlo algorithms

� We will show how they are used to compute ensemble
averages

� Important to know what set of thermodynamic constraints
are being imposed
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