A Brief Introduction to Statistical Mechanics

E. J. Maginn, J. K. Shah
Department of Chemical and Biomolecular Engineering University of Notre Dame
Notre Dame, IN 46556 USA
Monte Carlo Workshop
Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil

Statistical Mechanics

A central concept is the equilibrium ensemble

- Formal definition: An equilibrium ensemble describes the equilibrium probability density distribution in phase space of a system subject to given external constraints
- Phase space: 6N space of positions (q) and momenta (p) of all atoms N
- Different ensembles correspond to systems having different constraints
- Depending on the system, one of several different ensembles may be easiest to use
- All ensembles yield the same thermodynamic behavior in thethermodynamic limit

Postulates

- Ergodic Hypothesis: Given enough time, a system will sample all microstates consistent with the constraints imposed.
- Time averages are equivalent to ensemble averages
- Mathematically

$$
\begin{equation*}
\langle x\rangle=\frac{\sum_{i} x_{i} \rho_{i}}{\sum_{i} \rho_{i}}=\lim _{t \rightarrow \infty} \frac{1}{t} \sum_{i} x_{i} \Delta t_{i} \tag{1}
\end{equation*}
$$

where ρ_{i} is the probability density of state i.

- Equal a Priori Probabilities: All microstates having the same energy are equally probable.
- We use this postulate to construct distribution functions based solely on energetics
- Mathematically,

$$
\rho_{i}=\rho_{i}\left(E_{i}\right)
$$

Microcanonical Ensemble

Imagine a box with insulated, rigid, impermeable walls.

- The molecules in the box are isolated: no energy exchange with the surroundings (E is constant)
- The box is rigid (no volume change)
- The walls are impermeable (N is constant)
- Thermodynamic constraints are constant NVE

This is the natural constraints of the equations of motion (molecular dynamics ensemble)

Microcanonical Ensemble

- Microstates 2,3 and 4 have same constraints as microstate 1 - they are at same thermodynamic state
- Each arrangement of $\left(\mathbf{q}^{N}, \mathbf{p}^{N}\right)$ different
- ensemble: large collection of different microstates
- With time, molecules explore entire ($\mathbf{q}^{N}, \mathbf{p}^{N}$) space

Microcanonical Ensemble

- $W(N, V, E)$ be number of microstates with energy between E and $E-\delta E$
- δE is resolution limit for energy
- Equal a priori probabilities means that for a given microstate ν
- if $E-\delta E<E_{\nu}<E$, then $P_{\nu}^{N V E}=\frac{1}{W(N, V, E)}$
- otherwise $P_{\nu}^{N V E}=0$
- $P_{\nu}^{N V E}$ is the probability of a microstate (not an energy level)
- Probability of an energy level, E_{ν}, is found by multiplying $P_{\nu}^{N V E}$ by the degeneracy of that level

Microcanonical Probability Distribution

- Classically, microstates form a continuum in phase space
- The equilibrium probability density, $\rho^{N V E}\left(\mathbf{p}^{N}, \mathbf{q}^{N}\right)$, is given by

1. if $E-\delta E<H\left(\mathbf{q}^{N}, \mathbf{p}^{N}\right)<E$, then $\rho^{N V E}\left(\mathbf{q}^{N}, \mathbf{p}^{N}\right)=\frac{1}{\Sigma(N, V, E)}$
2. otherwise $\rho^{N V E}\left(\mathbf{q}^{N}, \mathbf{p}^{N}\right)=0$
where $\Sigma(N, V, E)=\int_{\Gamma^{\prime}} d \mathbf{q}^{N} d \mathbf{p}^{N}$

- The shorthand notation Γ^{\prime} refers to the region of phase space where $E-\delta E<H\left(\mathbf{p}^{N}, \mathbf{q}^{N}\right)<E$
- Note the dimensions of $\rho^{N V E}$ are $(p q)^{-3 N}$, which is consistent with a density.

Classical and Quantum Formulation Reconciliation

- Classically, define a dimensionless quantity that corresponds to the number of microstates in the quantum mechanical formulation:

$$
\begin{equation*}
W(N, V, E)=\frac{1}{h^{3 N} N!} \Sigma(N, V, E)=\frac{1}{h^{3 N} N!} \int_{\Gamma^{\prime}} d \mathbf{p}^{N} d \mathbf{q}^{N} \tag{3}
\end{equation*}
$$

- Prefactor $1 /\left(h^{3 N} N!\right)$ simply ensures consistency between classical and quantum mechanical pictures
- $h^{3 N}$ tells us there is a lower limit to the resolution with which we can define state points, and makes W dimensionless
- N ! arises from the indistinguishability of molecules (correct "Boltzmann counting").

Connection with Thermodynamics

- Boltzmann's expression for entropy

$$
\begin{equation*}
S(N, V, E) \equiv k_{B} \ln W(N, V, E) \tag{4}
\end{equation*}
$$

- This is the connection between (NVE) ensemble and thermodynamics
- Recall that

$$
\begin{equation*}
\left(\frac{\partial S}{\partial E}\right)_{N, V}=1 / T \tag{5}
\end{equation*}
$$

- Thus, we see that

$$
\begin{equation*}
\beta \equiv\left(k_{B} T\right)^{-1}=\left(\frac{\partial \ln W}{\partial E}\right)_{N, V} \tag{6}
\end{equation*}
$$

- Thermodynamic condition that temperature is positive requires that $W(N, V, E)$ be a monotonic increasing function of E

Canonical Ensemble

- "Natural" ensemble of MC
- Imagine a collection of microstates, each contained by rigid, impermeable but thermally conductive walls
- What is constant?
- Rigid: volume
- Impermeable: number of molecules
- Thermally conductive: NOT eneray, but temperature

Canonical Ensemble

- "Natural" ensemble of MC
- Imagine a collection of microstates, each contained by rigid, impermeable but thermally conductive walls
- What is constant?
- Rigid: volume
- Impermeable: number of molecules
- Thermally conductive: NOT energy, but temperature

Canonical Ensemble

- "Natural" ensemble of MC
- Imagine a collection of microstates, each contained by rigid, impermeable but thermally conductive walls
- What is constant?
- Rigid: volume
- Impermeable: number of molecules
- Thermally conductive: NOT energy, but temperature

Canonical Ensemble

- "Natural" ensemble of MC
- Imagine a collection of microstates, each contained by rigid, impermeable but thermally conductive walls
- What is constant?
- Rigid: volume
- Impermeable: number of molecules
- Thermally conductive: NOT energy, but temperature

Canonical Ensemble

	$0 \Leftrightarrow$	0°	
- 0	- 0°	$\cdots{ }^{\circ} 0$	0
$0^{\circ} 0^{\circ}$	0_{0}°	- 0	
$\cdots{ }^{\circ}$	-	${ }_{-}^{\circ} \mathrm{e}$	e°

- Energy of each microstate can fluctuate
- Conjugate variable (T) of each microstate constant
- The entire system can be treated as an NVE system, but each cell is at constant NVT

Collection of such microstates defines canonical ensemble

Canonical Ensemble, cont.

- What is the probability distribution for this ensemble?
- \mathcal{N}_{i} is number of members in state i with energy E_{i}
- Sum over all members in each state i gives total number of members (constraint on \mathcal{N})

$$
\begin{equation*}
\mathcal{N}=\sum_{i} \mathcal{N}_{i} \tag{7}
\end{equation*}
$$

- Total energy is constrained

$$
\begin{equation*}
E=\sum_{i} \mathcal{N}_{i} E_{i} \tag{8}
\end{equation*}
$$

- As is the total volume

$$
\begin{equation*}
V=\sum_{i} V_{i} \tag{9}
\end{equation*}
$$

where V_{i} is the volume of microstate i

Canonical Ensemble, cont.

- For any of distributions, the probability of finding \mathcal{N}_{j} ensemble members in the j th state is

$$
\begin{equation*}
\rho_{j}=\frac{\mathcal{N}_{j}}{\mathcal{N}} \tag{10}
\end{equation*}
$$

- But what is \mathcal{N}_{j} ? Replace \mathcal{N}_{j} with the expectation value $\left\langle\mathcal{N}_{j}\right\rangle$ determined from all combinations of the \mathcal{N} ensemble members
- Solution: assume equal a priori probabilities (that is, equal probabilities for energetically degenerate states)

Canonical Ensemble

We sketch the derivation in the notes. The result is

$$
\begin{equation*}
\rho_{k}=\frac{e^{-\beta E_{k}}}{\sum_{j} e^{-\beta E_{j}}} \tag{11}
\end{equation*}
$$

- This is the canonical ensemble ("Boltzmann") probability distribution
- Use to find expectation value of any mechanical property that depends upon the microscopic state of the system
- β is an undetermined multiplier
- We show in notes that

$$
\begin{equation*}
\beta=\frac{1}{k_{B} T} \tag{12}
\end{equation*}
$$

Canonical Ensemble

$$
\rho_{k}=\frac{e^{-\beta E_{k}}}{\sum_{j} e^{-\beta E_{j}}}
$$

- The denominator is the normalization term for the distribution of all states
- It is an important quantity which will appear in all canonical ensemble averages, and so is given a name

$$
\begin{equation*}
Q(N, V, \beta)=\sum_{k} e^{-\beta E_{k}} \tag{13}
\end{equation*}
$$

- Q is the canonical ensemble partition function, so called because it is a sum over all the states partitioned by energy level.

Classical Formulation

Hamiltonian $\mathcal{H}\left(\mathbf{p}^{N}, \mathbf{q}^{N}\right)=\left(\sum_{i} p_{i}^{2} /\left(2 m_{i}\right)+\mathcal{V}\left(\mathbf{q}^{N}\right)\right)$

$$
\begin{equation*}
Q=\frac{1}{h^{3 N} N!} \int d \mathbf{p}^{N} d \mathbf{q}^{N} \exp \left[-\beta\left(\sum_{i} p_{i}^{2} /\left(2 m_{i}\right)+\mathcal{V}\left(\mathbf{q}^{N}\right)\right)\right] \tag{14}
\end{equation*}
$$

Probability density

$$
\begin{equation*}
\rho^{N V T}\left(\mathbf{q}^{N}, \mathbf{p}^{N}\right)=\frac{\exp \left(-\beta\left[\mathcal{H}\left(\mathbf{q}^{N}, \mathbf{p}^{N}\right)\right]\right)}{Q_{N V T}(N, V, T)} \tag{15}
\end{equation*}
$$

Connection With Thermodynamics

In the notes, we show how various thermodynamic quantities are related to Q. Here we just state the results:

- $U=-\left(\frac{\partial \ln Q}{\partial \beta}\right)_{V, N}=k_{B} T^{2}\left(\frac{\partial \ln Q}{\partial T}\right)_{V, N}$
- $P=k_{B} T\left(\frac{\partial \ln Q}{\partial V}\right)_{N, T}$
- $S=\frac{U}{T}+k_{B} \ln Q=k_{B} T\left(\frac{\partial \ln Q}{\partial T}\right)_{N, V}+k_{B} \ln Q$
- $A=-k_{B} T \ln Q$

If we knew Q, we could compute all the thermodynamic properties of a system!

Computing a Partition Function

- Can we compute Q directly?
- Consider simple system of N interacting particles with only two states ("up" or "down")
- How many configurations are there to evalute?
- 2^{N} configurations
- So for 100 particles, you must evaluate $2^{100}=1 \times 10^{30}$ configurations!
- Obviously, we need to do something else. More on this later.

Computing a Partition Function

- Can we compute Q directly?
- Consider simple system of N interacting particles with only two states ("up" or "down")
- How many configurations are there to evalute?
- 2^{N} configurations
- So for 100 particles, you must evaluate $2^{100}=1 \times 10^{30}$ configurations!
- Obviously, we need to do something else. More on this later.

Computing a Partition Function

- Can we compute Q directly?
- Consider simple system of N interacting particles with only two states ("up" or "down")
- How many configurations are there to evalute?
- 2^{N} configurations
- So for 100 particles, you must evaluate $2^{100}=1 \times 10^{30}$ configurations!
- Obviously, we need to do something else. More on this later.

Isothermal - Isobaric Ensemble

- Most experiments are conducted at constant T and P
- The isothermal-isobaric (NPT) ensemble
- Constant number of particles, temperature, and pressure
- Thus, the volume will fluctuate, and must become a variable of the phase space
- A point in phase space given by specifying V, \mathbf{q}^{N}, and \mathbf{p}^{N}
- The probability density is derived in the manner used for the canonical ensemble. The result

$$
\begin{equation*}
\rho^{N P T}\left(\mathbf{q}^{N}, \mathbf{p}^{N}, V\right)=\frac{\exp \left(-\beta\left[\mathcal{H}\left(\mathbf{q}^{N}, \mathbf{p}^{N} ; V\right)+P V\right]\right)}{Q_{N P T}(N, P, T)} \tag{16}
\end{equation*}
$$

- where $Q_{N P T}$ is the isothermal-isobaric partition function in the semi-classical form

$$
\begin{equation*}
Q_{N P T}=\frac{1}{N!h^{3 N} V_{0}} \int d V \int d \mathbf{q}^{N} d \mathbf{p}^{N} \exp \left(-\beta\left[\mathcal{H}\left(\mathbf{q}^{N}, \mathbf{p}^{N} ; V\right)+P V\right]\right) \tag{17}
\end{equation*}
$$

- Often the symbol Δ is used for $Q_{N P T}$
- The factor V_{0} is some basic unit of volume chosen to render $Q_{N P T}$ dimensionless.
- Notice that

$$
\begin{equation*}
Q_{N P T}=\frac{1}{V_{0}} \int d V \exp (-\beta P V) Q_{N V T}\left(\mathbf{q}^{N}, \mathbf{p}^{N} ; V\right) \tag{18}
\end{equation*}
$$

where $Q_{N V T}$ is the canonical ensemble partition function of the system at volume V.

- The connection with thermodynamics is via the Gibbs function

$$
\begin{equation*}
G(N, P, T)=-\frac{1}{\beta} \ln Q_{N P T}(N, P, T) \tag{19}
\end{equation*}
$$

Grand Canonical Ensemble

- Canonical ensemble: many systems enclosed in container with impermeable, rigid, heat conducting walls
- Each system specified by N, V, T.
- grand canonical ensemble: each system enclosed in a container with permeable, rigid, heat conducting walls

Grand Canonical Ensemble, cont

- All boxes have permeable, rigid and heat conducting walls
- Each system characterized by constant μ_{i}, V, T
- Number of particles fluctuates (can range $0 \rightarrow \infty$)
- Notes show how to derive the grand canonical partition function

Grand Canonical Ensemble, cont

- Turns out the grand canonical ensemble can be thought of as an "expanded" canonical ensemble

$$
\begin{equation*}
\equiv(\mu, V, T)=\sum_{N} \sum_{j} e^{-\beta E_{N j}(V)} e^{\beta \mu N} \tag{20}
\end{equation*}
$$

- Allow for variation of N with conjugate variable μ
- 三 is the grand canonical partition function
- Summing over j for fixed N relates Q and \equiv

$$
\begin{equation*}
\equiv(\mu, V, T)=\sum_{N} Q(N, V, T) e^{\beta \mu N} \tag{21}
\end{equation*}
$$

Grand Canonical Ensemble, cont

$$
\begin{equation*}
\equiv(\mu, V, T)=\sum_{N} Q(N, V, T) e^{\beta \mu N} \tag{22}
\end{equation*}
$$

- $e^{\beta \mu}$ often denoted λ
- Thus $\mu=k_{B} T \ln \lambda$
- λ is the absolute activity
- Difference in chemical potentials between two states is given by

$$
\Delta \mu=k_{B} T \ln \left(a_{2} / a_{1}\right)
$$

Grand Canonical Ensemble, Classical Form

Classical form over continuous variables

$$
\begin{equation*}
\equiv(\mu, V, T)=\sum_{N=0}^{\infty} \frac{\exp (\beta \mu N)}{h^{3 N} N!} \int d \mathbf{p}^{N} d \mathbf{q}^{N} \exp \left(-\beta \mathcal{V}\left(\mathbf{p}^{N}, \mathbf{q}^{N}\right)\right) \tag{23}
\end{equation*}
$$

(c) 2011 University of Notre Dame

Configurational Integrals

- If Hamiltonian is separable

$$
\begin{equation*}
\mathcal{H}\left(\mathbf{p}^{N}, \mathbf{q}^{N}\right)=\mathcal{K}\left(\mathbf{p}^{N}\right)+\mathcal{V}\left(\mathbf{q}^{N}\right) \tag{24}
\end{equation*}
$$

kinetic energy term many be integrated out analytically

- Thermodynamic properties only depend on \mathbf{q}^{N}
- Can obtain thermodynamic properties from the configurational integral. Examples:

$$
\begin{gather*}
Z_{N V T}=\int d \mathbf{q}^{N} \exp \left(-\beta \mathcal{V}\left(\mathbf{q}^{N}\right)\right) \tag{25}\\
Z_{N P T}=\int d V \exp (-\beta P V) \int d \mathbf{q}^{N} \exp \left(-\beta \mathcal{V}\left(\mathbf{q}^{N}\right)\right) \tag{26}
\end{gather*}
$$

Summary

- Configurational integrals and probability densities are key elements of Monte Carlo algorithms
- We will show how they are used to compute ensemble averages
- Important to know what set of thermodynamic constraints are being imposed

