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Simple Probabilities

� Classical probability rule: count all the points in a given
sample space and assign them equal probabilities

� Given W points in the sample space, the probability of
each point is 1/W

� pi = 1
W

� Example: Two outcomes of a coin toss (H or T)
pH = 1/2
PT = 1/2
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Example: coin toss

� If we toss a coin N times, how many total outcomes are
there?
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Example

� If we toss a coin N times, how many total outcomes are
there?

� If N = 1, 2 outcomes
� N = 2, 4 outcomes (HH, TT, HT, TH)
� N = 3, 8 outcomes (HHH, HTT, · · · TTT)
� In general, 2N outcomes
� Key: each outcome counted separately even though we

may not be able to distinguish one “head” from another
� Probability of any one event

pi =
1

2N (1)
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Enumeration of Simple Events

1. We have enumerated all possible simple events and assign
equal probabilities to each

2. Simple event: the outcome of a trial that doesn’t
depend on any other event

3. Coin flipping works very well. Other cases?

4. Predicting sex of a baby
� How many outcomes?
� 2
� What is the probability any given birth will be a boy?
� Should be pboys = 0.5 BUT pboys = 0.51 for many countries.

What is wrong with our analysis?
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Another Example

� Will it rain today?
� Two possible outcomes (in Rio): rain (R) or shine (S)
� In South Bend, we have rain, shine, snow, and sleet
� Is prain = 0.5? Why not?
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Simple vs Compound Events

� The problem: births, weather, and other such things are
not simple events

� They are compound events
� Compound event: A collection of simple events
� Outcome depends on product of many simple event

probabilities

Must be careful and test any a priori assignment of probabilities
we make.
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Statistical Probability

� Statistical probability assignment of probabilities to events
by measuring the relative frequency of occurrence

� Example: Statistical probability of a person’s eye color
� How to determine? Go make the measurements!
� Graduate students examine 1000 people, report 601

brown, 251 blue, and 148 green

pbrown = 0.601, pblue = 0.251, and pgreen = 0.148

Is this “correct”?
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Statistical Probability Example

As usual, the advisor of these students isn’t satisfied. He tells
them to go out and make more measurements

� New sample size is 10,000
� Results

nbrown = 6, 205, nblue = 2, 688, ngreen = 1, 107

� Revised probabilities

pbrown = 0.6205, pblue = 0.2688, and pgreen = 0.1107

Is this “correct”?
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Statistical Probability

� Relative frequencies are (ni/N), where ni is the number of
occurrences and N are the total number of samples

� If relative frequencies tend toward a constant as N goes to
infinity, then this limit is defined as the statistical
probability, pi

pi = lim
N→∞

(ni

N

)
(2)

� In practice, (ni/N) will fluctuate, but should converge
� For random events, fluctuations in statistical probability

diminish as N−1/2

� Larger N, the more accurate is pi .
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Probability

� Key point 1: statistical probabilities are only accurate when
the same event occurs many times, so that the ratio (ni/N)
can converge

� It is incorrect to speak of the “statistical probability” of a
team winning a football match, since the contest will only
occur once

� Each game is played under different conditions
� Key point 2: Statistical probabilities only have meaning

when (ni/N) tends to a limit
� What is the statistical probability the Dow Jones Industrial

Average will close at 10,000 tonight?
� The market is not converging, so there is no “statistical

probability” associated with it
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Axioms of Probability Theory

1. All probabilities are either zero or positive numbers
Easy to see from definition: pi = ni/N

2. All probabilities are less than or equal to one
Also easy to see from the definition

3. For mutually exclusive events, the probability of either
event i occurring or j occurring is

pi+j = pi + pj (3)

where the notation pi+j refers to the probability that either
event i or j occur.
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Distributions

� Let’s go back to our team of graduate students
� Now the advisor wants to know the height of the average

American adult male
� The students measure heights (in inches, this is the US)
� After measuring 100 men, they compute the average

height using

〈h〉 =
1
N

N∑
i=1

hi (4)

where 〈h〉 is the average height, N is the total number of
men (samples) measured, and hi is the result of
measurement i .

� They obtain a value of 〈h〉 = 67.4 inches
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Height Example

The raw data are plotted below

40.0 60.0 80.0 100.0
0.0
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Height Example, cont.

� The ruler has a resolution of 1/2 in, so heights were binned
� Thus, the actual formula used for the mean was

〈h〉 =

∑nbins
i=1 nihi

N
(5)

� N =
∑nbins

i=1 ni is the sum over all the bins of the number of
men having a height within some discrete bin width

� In the limit of N → ∞, eqn 5 goes to

〈h〉 =
nbins∑
i=1

pihi (6)

� pi is the statistical probability that a man is of height hi
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The graduate students are so excited they take more samples
with N = 1000

40.0 60.0 80.0 100.0
Height, in

0.0

20.0

40.0

60.0
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...and N = 100, 000

40.0 60.0 80.0 100.0
Height, in

0.0
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Distributions

� As the number of samples increases, the distribution
becomes smoother and smoother

� Given a ruler with fine resolution dh, pi → p(h)dh
� dh is the differential “bin width”
� p(h) is a smooth function of h
� Continuous curve p(h) is the probability density distribution
� Sum over bins becomes an integral

nbins∑
i=1

pi = 1 (7)

becomes ∫ +∞

−∞
p(h)dh = 1 (8)
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Continuous Distributions

∫ +∞

−∞
p(h)dh = 1 (9)

We write the above equation in the general case; for the
example we were talking about, the lower limit would obviously
be zero. Note that p(h) must be a probability density
distribution with units of (h)−1.
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Gaussian Distribution

40.0 60.0 80.0 100.0
Height, in

0.0
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� The distribution which fits the data above is the most
important probability distribution in statistical mechanics

� The Gaussian or normal distribution

p(h) =
1√
2πσ

exp

[
−1

2

(
h− < h >

σ

)2
]

(10)

� Two parameters: the mean value (< h >) and standard
deviation (σ)
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Discrete Probability Distributions

� Let F (x) be the value of a discrete function at x
� If there are M possible values of F (F (x1), F (x2), . . . F (xM))

with probabilities P (P(x1), P(x2), . . . P(xM )) then

〈F (x)〉 =

∑M
j=1 P(xj)F (xj )∑M

j=1 P(xj )
(11)

� P(x): discrete distribution; F (x): discrete random variable.
� Since P is a probability, we know it is normalized.

M∑
j=1

P(xj ) = 1 (12)

〈F (x)〉 =
M∑

j=1

P(xj)F (xj ) (13)
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Continuous Distributions

dx

X

f

� Let f be a continuous distribution function of events
depending on x

� Let ρ dx be probability of event occurring in region dx

ρ dx =
f dx∫ +∞

−∞ f dx
(14)

� ρ is the probability density
(c) 2011 University of Notre Dame
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Continuous Distributions

dx

X

f

� Normalized probabilities
∫ +∞
−∞ ρ dx = 1

� Averages are calculated as follows

〈F 〉 =

∫
F f (x) dx∫
f (x) dx

(15)
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Gaussian Distribution

We have already encountered a Gaussian distribution. Using
the symbols for this section, the Gaussian distribution has the
form

P(x) =
1

(2πσ2)1/2
exp

[−(x − 〈x〉)2

2σ2

]
(16)
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Summary

� Simple probabilities
� Statistical probability derived from measuring frequency of

occurence of eents
� Relative frequencies of events must converge for large

number of samples to have a statistical probability
� Discrete and continuous probability distributions
� Weight individual occurences by distribution to get average
� Most important is the Gaussian distribution

P(x) =
1

(2πσ2)1/2
exp

[−(x − 〈x〉)2

2σ2

]
(17)
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