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Ising Model

Ising Lattice Model

� Consider a 2-D lattice of “spins” up or down
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Ising Model

Ising Lattice Model

� We replicate in all directions to add “periodic boundary
conditions”
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Ising Model

Ising Lattice Model

Consider a system of N spins on a lattice. In the presence of an
external magnetic field, H, the energy of a particular state ν is

Eν = −
N∑

i=1

Hsi − J
∑

ij

si sj (1)

� First term: energy due to individual spins coupling with
external field

� Second term: energy due to interactions between spins.
� Assume that only nearest neighbors interact
� J is coupling constant, and describes the interaction

energy between pairs.
� When J > 0, it is energetically favorable for neighboring

pairs to be aligned.
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Ising Model

Ising Lattice Model

If J is large enough (or temperature low enough), the tendency
for neighboring spins to align will cause a cooperative
phenomena called spontaneous magnetization.

� Physically: caused by interactions among nearest
neighbors propagating throughout the system

� A given magnetic moment influences alignment of spins
separated by a large distance

� Such long range correlations associated with long range
order; lattice can have net magnetization in the absence of
external magnetic field.

� Magnetization defined as

< M >=
N∑

i=1

si (2)

� A non–zero < M > when H = 0 is called spontaneous
magnetization

(c) 2011 University of Notre Dame



Ising Model

Ising Lattice Model

� Temperature where system exhibits spontaneous
magnetization is the Curie temperature (or critical
temperature), Tc

� Tc is the highest temperature for which there can be a
non–zero magnetization in the absence of an external
magnetic field

� For Tc > 0, Ising model undergoes an order–disorder
transition

� Similar to a phase transition in a fluid system - simple
model of a fluid

� No order-disorder transition in 1-D only 2-D and 3-D

(c) 2011 University of Notre Dame



Ising Model

Ising Lattice Model

� 1-D Ising model solved analytically by Ernst Ising in his
1924 PhD thesis

� Historical note: German Jew who fled Europe, ending up in
Peoria, IL as physics teacher at Bradley University

� Never published again after WWII
� Died in 1998 - see obituary:

http://www.bradley.edu/las/phy/personnel/isingobit.html
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Ising Model

Ising Lattice Model

Lars Onsager showed in the 1940s that for H = 0, the partition
function for a two–dimensional Ising Lattice is

Q(N, β, 0) = [2 cosh(βJ)eI ]N (3)

where

I = (2π)−1
∫ π

0
dφ ln(

1
2

[1 + (1 − κ2 sin2 φ)1/2])

with
κ = 2 sinh(2βJ)/cosh2(2βJ)

This result was one of the major achievements of modern
statistical mechanics
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Ising Model

Ising Lattice Model

� It can be shown that

Tc = 2.269J/kB (4)

� Furthermore, for T < Tc , the magnetization scales as

M
N

∼ α(Tc − T )λ (5)

� Should be possible to perform Metropolis simulation of this!
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Ising Model

Properties of Ising Lattice

� Physically, Ising lattice shows many of the characteristics
of a fluid

� Magnetic susceptibility, χ = (< M2 > − < M >2)/kBT ,
diverges at critical point

� Local magnetization fluctuations become very large near
critical point, similar to density fluctuations near critical
point of a fluid

� Small variations in kBT/J lead to spontaneous phase
changes
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Ising Model

Properties of Ising Lattice

� The correlation length (distance over which local
fluctuations are correlated) is unbounded at Tc

As T approaches T   , correlation length increasesc

Figure: Tc is being approached from left to right. The correlation
length of like regions (i.e. black and white squares) increases. At
Tc , an order–disorder transition occurs, analogous to
condensation
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Ising Model

Ising Lattice Algorithm

How to simulate the 2-D Ising lattice?

1. Choose an initial state of spins (it will not matter)

2. Choose a site i

3. Calculate the change in energy ∆E if the state if i is
changed

4. If energy is lowered by change, accept the change. If not...

5. Generate random number 0 < ζ < 1

6. If ζ < exp(−β∆E) accept the change. Otherwise, don’t

7. Repeat

Compute < M >, < E > and fluctuations versus T. Let’s do it!
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Ising Model

Ising interactive Algorithm

Take a look at the source code ising2d.f
� Lattice array or 0 or 1:

latt(ix,iy)

� Largest allowable lattice size: 40 X 40
� Initialize it in one of four choices
� Compute the initial energy

CALL echeck
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Ising Model

Ising interactive Algorithm

Core Metropolis algorithm is in routine “update”

do istep=1,nstep
CALL update

ccc sum E, M and fluctuations
emean=emean+etot
efluc=efluc+etot*etot
rmmean=rmmean+dfloat(mtot)
rmfluc=rmfluc+dfloat(mtot)*dfloat(mtot)

enddo ! istep = 1,nstep
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Ising Model

Ising interactive Algorithm

Metropolis implementation for an nsize X nsize lattice

size=dfloat(nsize)
nsize1=nsize-1

ccc Pick a spin at random. Each call to
ccc update performs nsizeˆ2 attempts

do iflip=1,nsize*nsize
ccc (ix,iy) is a random position on lattice

ix=int(size*uni())+1
iy=int(size*uni())+1

ccc nhsum is a counter that sums the value
ccc of all spins adjacent to (ix,iy)

nhsum=0
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Ising Model

ccc get positions adjacent to (ix,iy)
ccc (remember PBC)

do nhbr=1,4
nhx=mod(ix+nhxl(nhbr)+nsize1,nsize)+1
nhy=mod(iy+nhyl(nhbr)+nsize1,nsize)+1
nhsum=nhsum+latt(nhx,nhy)

enddo

ccc compute energy felt by spin at (ix,iy)
itest=nhsum*latt(ix,iy)
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Ising Model

Here is the Metropolis algorithm

if (itest.le.0) then
ccc Automatically accept the move
ccc Sum total energy and magnetization

mtot=mtot-2*latt(ix,iy)
latt(ix,iy)=-latt(ix,iy)

else
ccc Select a random number on (0,1)
ccc Conditional accept (embe is precalculated E)

if (test.le.embe(itest)) then
etot=etot+dfloat(itest)*rj2
mtot=mtot-2*latt(ix,iy)
latt(ix,iy)=-latt(ix,iy)

end if
ccc Reject the move. Keep everything the same

end if
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Ising Model

Ising interactive

� Run Ising interactive at T > Tc . Note the value of the
magnetization , fluctuations

� Dump the configuration and look at it. What do you see?
� Slowly reduce T and approach Tc. What happens?
� Start at low T (T ≈ 0.4). What happens?
� Slowly raise T to approach Tc = 2.26 What happens?
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Ising Model

Ising batch input file

ising.40.10K.log : name of log file
123456 : rdm nbr seed
mvst.1 : magnetization vs T filename
75 : unit (don’t change)
evst.1 : energyvs T filename
76 : unit (don’t change)
mflucvst.1 : magnetiz fluc vs T filename
77 : unit (don’t change)
eflucvst.1 : energy fluc vs T filename
78 : unit (don’t change)
1 : 1=random,2-inter,3=check,4=read
5000 : number of equilibration steps
2 : n different runs
40 10000 4 : nsize nstep kT/J for run
40 10000 2 : nsize nstep kT/J
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