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Using Probabilitic Methods to Solve Problems

It has been known for a long time that it is possible to use
probabilistic methods to determine deterministic quantities.

� W. S. Gossett (“student”) estimated the correlation
coefficient in his “t” distribution with the help of sampling
methods

� Joel Hildebrand (his graduate students) generated random
samplings of spheres in a box to investigate liquid phase
properties.

� Famous example: Lazzerini (Italian mathematician, 1901)
and computing π
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George Louis LeClerc Comte de Buffon

� French naturalist
� Discovered binomial theorem (age 20)
� Discovered theorem in mathematical probability (1777)

If a needle of length � is thrown randomly onto a set of equally
spaced parallel lines, d apart (d > �), the probability that the
needle will cross a line is 2�

πd .

d
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Lazzarini’s “Experiment”

� Buffon’s theorem: a probabilitic way of estimating π

� Lazzerin(1901): Reportedly dropped a 2.5 cm needle 3408
times

� 1,808 crossings on 3 cm grid
� π = (4/3) ∗ 3408/1808 = 3.14159292.
� You could imagine how much easier this would be on a

computer today...
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Did Lazzarini Cheat?

� π = (4/3) ∗ 3408/1808 = 3.14159292.
� This is a remarkable accurate result!
� Estimate reduces to 355/113
� This fraction was the rational approximation of π obtained

by Chinese mathematician Tsu Ch’ung-chi around A.D.
500...

� See Mathematics Magazine, 67, 83 (1994) for interesting
article
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How lucky can you get?

� Take care when using stochastic methods
� For d = 1, l = 0.7857, two needles thrown, 1 crosses a

line: π ≈ 3.1428
� Even luckier than Lazzarini

Let’s perform the simulations and see what we get! Run demo
Buffon

(c) 2011 University of Notre Dame
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Other ways of estimating π stochastically

� Imagine a circular pan inscribed inside a square pan
� Place the pans in the rain
� Number of drops hitting the pans is Ntrials

� Fraction landing inside the circular pan (Nhits)
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Thus, π = 4 Nhits
Ntrials

Let’s simulate it.
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Random Numbers

� Key to these and other methods is the generation of
“random” numbers (sequence of numbers that appear
uncorrelated)

� Typically uniform on [0,1] and any range generated by
suitable multiplication

� Many “random number generators” available
� intrinsic functions
� other functions, subroutines (we have given some

examples)

� Perform statistical tests to ensure quality. Also want speed.
� Large literature on this - we will not discuss further. We just

assume we can generate good random numbers!
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Monte Carlo

� These are all examples of Monte Carlo simulations
� Conventional numerical discretization

� Describe system mathematically with differential equations
� Discretize and solve equations numerically

� Monte Carlo
� Often simulate the process directly
� No need to write down equations
� Requirement: system under study must be characterized

by probability density function (pdf)
� Given a pdf, randomly sample from it

(c) 2011 University of Notre Dame
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Monte Carlo

� Easiest to think of MC used for simulating stochastic
processes

� This is too restrictive!
� Can solve “deterministic” problems also with MC
� Example: ealuating a definite integral
� Key requirement: pose solution in terms of pdfs, then treat

system stochastically

Definition: Monte Carlo methods encompass all methods that
employ statistical simulation of some underlying system,
whether or not the system represents a real physical process.
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Evaluating Integrals with Monte Carlo

� So–called “sample mean method” is a way of determining
integrals from stochastic “experiments”.

� Basic problem: evaluate I =
∫ x2

x1
f (x)dx

� f (x) is some arbitrary function

x x1 2

f

x
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Evaluating Integrals with Monte Carlo

� I =
∫ x2

x1
f (x)dx is re-written as

I =

∫ x2

x1

(
f (x)

ρ(x)

)
ρ(x)dx (1)

� ρ(x) is an arbitrary probability density function.
� Then generate Ntrials random numbers ξ from the

distribution ρ(x) in the range (x1, x2)

� Evaluate f at each step.
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Evaluating Integrals with Monte Carlo

� We see that

I =

〈
f (ξ)
ρ(ξ)

〉
ρ(x)

(2)

� Brackets indicate an average over the Ntrials evaluations,
and that ρ(x) used as probability distribution.

x x1 2

f

x

random "shots"
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Evaluating Integrals with Monte Carlo

� What should ρ(x) be?
� Simplest to let ρ(x) be a uniform distribution

ρ(x) =
1

(x2 − x1)
, x1 ≤ x ≤ x2 (3)

x x1 2
x

ρ(   )x

1 / (x2 - x1)
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Evaluating Integrals with Monte Carlo

x x1 2
x

ρ(   )x

1 / (x2 - x1)

� With uniform distribution, integral is

I ≈ (x2 − x1)

Ntrials

Ntrials∑
i=1

f (ξi) (4)

� Justification for eq 4: Mean Value theorem.
(c) 2011 University of Notre Dame
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Algorithm for Evaluating Integrals with Monte Carlo

1. Generate random number, ζ, uniformly on the range (0, 1]

ζ0 1

P(   )ζ 1

2. Random value on (x1, x2) from ξ = x1 + ζ(x2 − x1).
3. Calculate f (ξ)
4. Accumulate the sum

∑
i f (ξi) and estimate integral

I ≈ (x2 − x1)

Ntrials

Ntrials∑
i=1

f (ξi) (5)
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Monte Carlo Integration to Estimate π

� This approach can be used to estimate π by considering
the equation for a circle in the first quadrant

f (x) = (1 − x2)−1/2 (6)

with x between x1 = 0 and x1 = 1.
� If one uses the procedure outlined above, the estimate of π

after 107 trials is 3.14169.
� Exercise: try this on your own
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Monte Carlo Integration and Other Techniques

� For simple functions (i.e. one– or two–dimensional) Monte
Carlo integration cannot compete with straightforward
methods such as Simpson’s rule.

� For example, using

f (x) = (1 − x2)−1/2 (7)

Simpson’s rule obtains π = 3.141593 after only 104

function evaluations. (Better with far fewer integrations).
� However, for the multidimensional integrals encountered in

statistical mechanical applications, the sample mean
method (with suitable choice of ρ(x)) is far superior to
standard techniques. Why?

(c) 2011 University of Notre Dame
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Monte Carlo and Multi-dimensional Integrals

� Consider the configurational integral for N = 10 atoms

Z =

∫
drN exp[−βV(rN )] (8)

L

N 

L

L

� We can think of f (rN) ≡ f (r1, · · · , rN) = exp[−βV(rN)]

� Z is a 3N–dimensional integral at fixed NVT
(c) 2011 University of Notre Dame
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Monte Carlo and Multi-dimensional Integrals

� For N = O(10), Z is estimated using MC integration as

Z ≈ V N

Ntrials

Ntrials∑
i=1

exp[−βV(r(i)1 , · · · , r(i)N )] (9)

where (r(i)
1 , · · · , r(i)N ) is a randomly selected point in the

3N–dimensional configuration space. That is, it is N
triplets of random numbers on (0, L).

(c) 2011 University of Notre Dame
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Monte Carlo and Multi-dimensional Integrals

� To evaluate Z with a Simpson technique requires
evaluating f (rN) at all nodes of a regular grid throughout
the configuration space.

� If 10 points (nodes) per coordinate are used, this would
entail 103N function evaluations!

� Clearly an unreasonable number even for this
small–dimensional system.

� Monte Carlo integration, on the other hand, one can obtain
a reasonable estimate for Ntrials much less than this.

� Of course, our estimate gets better as Ntrials gets larger,
but we will converge fairly rapidly to the actual value.

(c) 2011 University of Notre Dame
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Monte Carlo and Multi-dimensional Integrals

� For higher–dimensional systems, e.g. N = O(100), even
standard Monte Carlo integration becomes infeasible.

� Why?
� Consider MC integration of Z for hard sphere fluid

Z ≈ V N

Ntrials

Ntrials∑
i=1

exp[−βV(r(i)1 , · · · , r(i)N )] (10)

1. Pick 300 random numbers on (0, L) to get rN

2. Calculate Boltzmann factor for this configuration.
3. hard spheres: Boltzmann factor will only be 1 if no two hard

spheres overlap.
4. If only two atoms overlap, potential energy is infinite;

Boltzmann factor for that trial will be zero.
5. At reasonable density, probability of generating a non-zero

Boltzmann factor randomly goes to zero
(c) 2011 University of Notre Dame
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Monte Carlo and Multi-dimensional Integrals

� Similar problem with computing ensemble averages from
MC integration.

� Example: estimate A from

< A >NVT =

∫
drA exp[−βV]∫
dr exp[−βV]

(11)

were ≈
PNtrials

i=1 Ai exp[−βVi ]
PNtrials

i=1 exp[−βVi ]

� Estimating the numerator and denominator separately
using the uniform sample mean method infeasible at high
densities.

� Obvious solution: choose random coordinates from a
non–uniform distribution (“importance sampling”)

(c) 2011 University of Notre Dame
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Importance Sampling

� Basic idea: choose random numbers from density
distribution ρ(x) which concentrates function evaluations in
region that makes biggest contribution to integral

< f >ens=

∫
drNf (rN)ρens(rN)∫

drNρens(rN)
(12)

� Random configurations → few configurations contribute to
integral

� Idea: Sample configuration space nonuniformly → more
probable (i.e. low energy) states sampled more frequently

(c) 2011 University of Notre Dame
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Importance Sampling

� What if we cold sample states according to ρens?
� Then calculating ensemble average < f > amounts to

taking a simple arithmetic average over the sampled
microstates

< f >ens=
1

Ntrials

Ntrials∑
i=1

f (i) (13)

� Same as taking averages during MD!
� Metropolis and co–workers did this in late 1940s1

1Metropolis, N; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; and
Teller, E., J. Chem. Phys., 21, 1087-1092, (1953)
(c) 2011 University of Notre Dame
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Metropolis Monte Carlo

� Term “Monte Carlo” coined by Metropolis (1947)
� Described class of numerical techniques developed by von

Neuman, Ulam, and Metropolis at Los Alamos near the
end of World War II.

� Their interest: simulate the diffusion of neutrons in
fissionable material

� Methods involved use of random numbers (casinos at
Monte Carlo)

� Ideally suited for new MANIAC computer at Los Alamos

(c) 2011 University of Notre Dame
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Markov Chains

� To understand the Metropilis methods, we need to
understand the concept of a Markov chain

� Markov chain: a sequence of trials (stochastic processes)
that satisfies two conditions:

1. The outcome of each trial belongs to a finite set of
outcomes, called the state space. We describe the state
space by {γ1, γ2, · · · , γm, γn, · · · }.

2. The outcome of each trial depends only on the outcome of
the immediately preceding trial. That is, the memory of the
system only goes one step back.

(c) 2011 University of Notre Dame
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Markov Chains

� The transition probability links two states γm and γn

� Define πmn as the probability that a trial produces state n,
given that the previous trial resulted in state m

� πmn depends on values of m and n, but is independent of
where within the sequence the considered trial lies

� Thus πmn is independent of “time” or number of trials
� Given values of πmn for all possible m and n, a transition

probability matrix can be formed
� This matrix contains all information on the “dynamics”

governing the evolution of the Markov chain
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Markov Chain Example (after Allen and Tildesley)

� The reliability of your computer follows a certain pattern.
� If it is up and running one day, there is a 60% chance that it

will be up the next day.
� If it is down one day, there is a 70% chance it will be down

the next day.

� Our state space has only two components, “up” (U) and
“down” (D).

� The transition probability matrix is π =

(
0.6 0.4
0.3 0.7

)

� The individual elements of the above matrix are
πuu = 0.6; πud = 0.4 πdu = 0.3; πdd = 0.7

� Note that
∑

m πmn = 1; the rows of the transition probability
matrix sum to 1; the system must be in some state at the
end of a trial. This makes π a stochastic matrix.

(c) 2011 University of Notre Dame
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Markov Chain Example (after Allen and Tildesley)

� Assume that on day 1, the computer is equally likely to be
up and down. That is

ρ(1) = (ρU ρD) = (0.5 0.5)

� What are the probabilities the computer will be up/down
the next day?
ρ(2) = ρ(1)π = (0.45, 0.55)

� Up: (0.5 ∗ 0.6) + (0.5 ∗ 0.3) = 0.45
� Down: (0.5 ∗ 0.7) + (0.5 ∗ 0.4) = 0.55
� Thus, there is a 45% chance your computer will be up on

day 2, but a 55% chance it will be down

(c) 2011 University of Notre Dame
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Markov Chain Example (after Allen and Tildesley)

� Repeating the process, probabilities for day 3:
ρ(3) = ρ(2)π = ρ(1)ππ = (0.435, 0.565)

� There is now only a 43.5% chance of it being up
� Write a small program or Excel worksheet to compute the

probabilities for days 5 and 6 and 20
� Result ρ(5) = (0.4287, 0.5713) ρ(6) = (0.4286, 0.5714)

ρ(20) = (0.4286, 0.5714)

� Clearly, there is a limiting distribution which we reached,
given by the formula

ρ = lim
τ→∞ρ(1)πτ (14)

(c) 2011 University of Notre Dame
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Limiting Distributions

� We see from eqn 14 that the limiting distribution, ρ, must
satisfy the eigenvalue equation

ρπ = ρ (15)∑
m

ρmπmn = ρn (16)

� ρ is an eigenvector of the stochastic matrix π
corresponding to an eigenvalue of 1.

� ρ is completely determined by π, and independent of the
initial condition (ρ(1)). All memory of the initial state has
been lost.

� Markov chains where one can go from any state to any
other state are called ergodic or irreducible. Such chains
always have a limiting probability distribution.
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Transition Matrices and Ergodicity

� If the transition probability matrix is full, the chain is ergodic
� If the transition probability matrix is block diagonal, the

chain is non–ergodic
� For statistical mechanical systems, the transition matrix is

enormous
� We assume it is stochastic and ergodic (though we can’t

prove it).
� Interestingly, we do not know the elements of the matrix!
� We do know, however, the limiting distribution...(what is it?)
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Metropolis Monte Carlo Algorithm

� Problem: the probability distribution of the
multi–dimensional space is known, but the elements of the
transition matrix are not

� Example: in NVT ensemble, the limiting distribution of a
Markov chain is the vector with elements ρm = ρNVT (γm)
for each point γm in phase space.

� Note: the multi–dimensional space may be discrete (ρm is
a probability in this case) or it may be continuous,
(ρm = ρ(γm)dγ, where ρ(γm) is a probability density and
dγ is an elementary volume in the multi–dimensional
space centered at γm).

� Goal: An efficient numerical procedure for sampling the
multi-dimensional space, according to the probability
distribution {ρm}.
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Metropolis Monte Carlo Algorithm

� What does “sampling” mean?
� We wish to pick a finite set of points (states)

m1, m2, · · · , mt , · · · , mNtrials
such that the probability of

finding each state mt in the sequence is practically equal to
ρmt

� A given state may appear more than once in the sequence
� If we can sample states this way, the average of any

function f defined on the state space is

< f >≈ 1
Ntrials

Ntrials∑
t=1

f (mi) (17)

� The solution to the problem of how to do this is known as
Metropolis Monte Carlo

(c) 2011 University of Notre Dame
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Metropolis Monte Carlo Algorithm
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Metropolis Monte Carlo Algorithm

� Idea: Generate sequence of points, each from the previous
one, according to certain stochastic rules.

� Create a Markov chain of states
m1 → m2 → · · · → mt → · · · → mNtrials

� Enforce a condition known as “detailed balance”. Many
variations, but for our purpose we define it as

πmnαmnρm = πnmαnmρn (18)

� αmn is the probability of attempting a move from state m to
state n.

(c) 2011 University of Notre Dame
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Metropolis Monte Carlo Algorithm

� Satisfy detailed balance by selecting the transition matrix
of the Markov chain (for moving from m to n) as

πmn =
αnm

αmn
, ifρn ≥ ρm, n �= m (19)

πmn =
αnm

αmn

ρn

ρm
, ifρn < ρm, n �= m (20)

� It is also possible to stay in the same state

πmm = 1 −
∑
m �=n

πmn (21)

(c) 2011 University of Notre Dame



Stochastic Numerical Methods
Evaluating Integrals

Markov Chains
Metropolis Algorithm

Attempt Matrix and Metropolis Acceptance Rule

� Often moves are attempted only between close–lying
states

� That is, most of the elements of α are zero
� Typically, αmn is uniform in a small region of the space

around state m – meaning that an attempted move to any
of the nearby states n is done with equal probability.

� Also, α is often symmetric (i.e. αmn = αnm) and stochastic
(i.e.

∑
n αmn = 1).

� Under these conditions, the probability of accepting a move
from m to n, the so–called “Metropolis selection criterion” is

πmn = min(1,
ρn

ρm
) (22)

� “min” is Fortran minimum function; accepts the minimum of
two arguments

(c) 2011 University of Notre Dame



Stochastic Numerical Methods
Evaluating Integrals

Markov Chains
Metropolis Algorithm

Metropolis Acceptance Rule

� With this selection criterion

1. If new state, n, is more probable that the state m from
which we started, then accept the new state n as the next
state in the Markov chain

2. If the new state, n, is less probable than the old state m,
accept the new state n with probability

ρn

ρm
< 1 (23)

3. When a new state is accepted, count it in properties for
averaging

4. If the new state n is not accepted, state m is retained as the
next state in the chain and its characteristics are entered
again in the averaging procedure.
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Additional Details

πρ = ρ (24)

� The above property guarantees that, regardless of the
starting point of the Markov chain, a chain long enough will
asymptotically sample the probability distribution of
interest, defined by ρ.

� The acceptance rule means ρ only needs to be known up
to a multiplicative constant

� Only probability ratios appear in the Metropolis scheme
� This makes the method very useful in statistical mechanical

applications.

(c) 2011 University of Notre Dame
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Other Algorithms

� There are other algorithms that satisfy the transition matrix
criteria listed above. So–called Barker sampling yields

πmn = αmnρn/(ρn + ρm), m �= n (25)

πmn = 1 −
∑
n �=m

πmn (26)

� Eqns 25 - 26 also satisfy microscopic reversibility, but in
general are not as efficient as the Metropolis algorithm.
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Example: Metropolis in the Canonical Ensemble

� What is ρNVT

� Only need to know it to a multiplicative constant
ρNVT ∝ exp (−βV)

πmn = min
(

1,
ρn

ρm

)
= min

(
1,

exp (−βVn)

exp (−βVm)

)
(27)

πmn = min (1, exp [−β(Vn − Vm)]) (28)
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Metropolis Flowsheet

1. Starting from initial state m, an elementary move is
attempted to neighboring state n

2. The probabilities of states m and n are compared.
3. Metropolis selection criterion:

� If state n is more probable, the move is immediately
accepted.

� If state n is less probable, a random number ζ on (0, 1) is
generated. If ρn/ρm ≥ ζ accept the move and the new state
is n. If ρn/ρm < ζ, reject the move.

� The “new” state (n for accepted moves, m for rejected
moves) is taken as the current state, and used in computing
averages.

4. Iterate many times and compute averages. Stop when
convergence is reached.
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Metropolis Flowsheet

Initial state m

move to neighboring state n with probability 

states near m.

Attempt elementary move:

cmn.  n is typically selected randomly from

Compare a priori probabilities, 

ρ    ρmn

ρn > ρ m-
: state n is 

taken as the next state 
in the Markov chain.  n
becomes the current state

ρ n
ρ< m: generate

with ratio ρ n / ρ m

state n taken 
as the next state 
in chain with 
probability 
ρ ρ

state m retained
as next state in
chain with
probability 
1 - 

n / m
ρn / ρm

Has desired number of states been sampled?

current state used in computing averages

yes

finished!

no

random number, compare

move accepted move rejected

Metropolis Monte Carlo
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Metropolis Monte Carlo simulation of 3-state model

� Revist the three-state model and compute the average
energy and probability of each state at 200 K, 300 K and
1000 K.

� Compare with analytical result.
� Method 1: don’t count “old” state of rejected moves in

average
� Method 2: do count “old” state of rejected moves in

average
� Explore accuracy of result vs. number of iterations.
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